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Two dimensional plane jet with the Bickley-Schlichting velocity profile [i] 

U o = t - -  th2~ 

( g  = y / L ,  Uo = U / U o o  a r e  t h e  n o n d i m e n s i o n a l  c o o r d i n a t e  a n d  v e l o c i t y ,  L = 3 . 6 4  x2/3(K/,2) -:/3, 

: 0 .4543  are the r e f e r e n c e  l e n g t h  and v e l o c i t y ,  / i s  an i n -  
] - - o o  

teresting problem in stability theory since it belongs to the class of flows with a point 
of inflection in the velocity profile and according to Rayleigh's theorem it has inviscid in- 
stability. The stability of plane jet with respect to infinitely small two-dimensional 
disturbances has been studied theoretically in great depth so far for the plane-parallel 
flow approximation [2-5] as well as for the nonparallel mean flow [4-6]. Consideration of 
finite amplitude disturbances [7] makes it possible to theoretically describe the experi- 
mentally observed zone of stable oscillations in the neighborhood of critical Reynolds num- 
ber R,. This leads to an increase in R, so that the computed and experimental results get 
closer to each other. There are no studies on the effect of three-dimensional disturbances 
on the stability of plane jet though, as mentioned in [8, 9], in view of the fact that the 
jet is very sensitive to external factors like noise, slightest vibrations, "draft of air," 
it is possible that three-dimensional disturbances could be present in the disturbance spec- 
trum. The appearance of three-dimensional waves can also be the result of the growth of 
plane disturbances in the nonlinear region. An interesting feature of the spatial wave mo- 
tion is the creation of longitudinal vorticity in the flow which leads to additional re- 
distribution of momentum in the boundary layer. As shown in [i0], one of the simplest 
models describing the appearance of nonzero moment is the model of cross disturbances, viz., 
a pair of oblique intersecting Tollmien--Schlichting waves. For a boundary layer on a solid 
surface such symmetric crossing can form streamwise, spatially periodic vortices as observed 
in experiments. Considering the fact that the boundary layer on a flat plate is the limit- 
ing case of the class of flows with inflection point (Uo$~ = 0 lies at the wall) and the need 
for taking three-dimensional disturbances into account has been established, it appears im- 
portant to study the interaction of such disturbances with inviscidly unstable boundary 
layer, viz., plane Jet, which could be useful to clarify the question of simultaneous effect 
of disturbance waves of different amplitudes on the stability of such a boundary layer. 
These studies have been carried out for a plane-parallel jet within the framework of single 
harmonic approximation [Ii] which makes it possible to include the system of Reynolds equa- 
tions for the mean flow. The interaction of oblique disturbances in the form of intersect- 
ing oblique Tollmien--Schlichting waves of finite amplitude with the plane flow without 
solid boundaries, viz., laminar jet with Bickley--Schlichting velocity profile has been con- 
sidered in this paper. On the basis of an accurate solution of Reynolds equations longi- 
tudinal vortices and secondary mean flow have been found and it has been shown that the 
momentum redistribution in such an interaction from the jet axis to the outer region agrees 
with the experimental results. The secondary flow happens to be more stable than the basic 
flow. It should be recognized that the interaction of plane waves and the flow is the criti- 
cal factor for excitation in the transition region. 

i. Symmetric crossing of waves occurs due to the interaction of two oblique Tollmien-- 
Schlichting waves • v, w, P}1,2(~) exp [io~(x--Ct) + iyz] with given strength m, which is pres- 
ent here as a parameter. The angle of inclination e of the waves to the longitudinal axis 
is determined by the relation tan e = y/a, where a and y are the wave numbers in the stream- 
wise (x) and spatial (z) directions. If y is real, then the crossing gives a solution of 
the type of standing waves whose period is determined solely by the value of y. The re- 
sultant waves are represented as follows 
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ul + u,z = 2• ~) ~ cos yz, vl + v~ = 2• (~) ~ cos yz, 
! ! 

wl + w2 = 2• (~) ~ sin yz, 

p~ + p~ = 2• (~) g cos ~ ~ = ia (x - -  Ct). 

U s i n g  t h e  e q u a t i o n s  o f  m o t i o n  i t  i s  p o s s i b l e  t o  show t h a t  t h e  f o l l o w i n g  e q u a t i o n s  a r e  t r u e  
f o r  d i s t u r b a n c e  a m p l i t u d e  

{u~ v, w, p}(~) = {u~, vl, wl, Pl}(~) = {u~, v~ --w~, P2)(~)" 

Using Squire's transformation for the new variables 

k2 = a2 @ 7 2  poR = P B e ,  % =  a u - - ? w ,  (i.i) 

kR = a r e ,  ku o = a u + y w ~  Re = UooL/v 

it is possible to get from the linearized Navier--Stokes equations for three-dimensional 
disturbances a system of equations equivalent to Orr--Sommerfeld equations for two-dimen- 
sional disturbances 

U o ~ - - A u  o = RUo~v@ikpo  ~ v ~ - - A v  = Rp0~, v ~ + i k u  o = O~ 

along with a nonhomogeneous equation for X: 

X~ - - A x  = ?ReUo~v~ A = k 2 + i k R ( U o - - C ) .  

The symmetry of the velocity profile with respect to the similarity variable ~ (as in 
the case of channel flow), splitting the disturbances into symmetric and antisymmetric 
parts is generally made to simplify computations. For the antisymmetric mode uo = v$$$ = 0 
along the jet axis (~ = 0) and for the symmetric mode uo~ = v = 0. At the outer boundary 
of the jet ~ = ~k (usually ~k = 6) the condition of the boundedness of disturbances is 

stipulated [3, 5]: 

uo~ + (k + ~)Uo~ + k~Uo = O~ 

~ + (k + ~)~ + kg~ = O~ ~ = A(~).  

The behavior of the even component of velocity disturbances w coincides with the even 
component u and hence for the antisymmetric mode it follows from (i.i) that X(0) = 0, and 
for the symmetric mode X~(0) = 0. It is possible to put, as a first approximation, X(~k) = 
0 for both modes at the jet boundary. 

As shown by computations and experiments the jet instability is determined by anti- 
symmetric disturbances for which it has been found that R, ~ 4-8, and for symmetric R, 
88 (3, 5). Consequently, the primary attention in this paper is paid to the antisymmetric 
mode as the most unstable. 

2. The secondary flow in the quasisteady approximation is described by Reynolds system 
[i] which is written in the following form after nondimensionalizing 

VU~ + WUz  = ( t /Be ) (U~  + Uzz) - - / ~  - - / o ,  ( 2 . 1 a )  

VV~ + WV~ = --P~ + (I /Be)(V~ + V~) - - /~;  
(2.1b) 

V W i  + W W z  = - -Pz  + (1/Be)(W~ _c. W~z) - - /~ ,  

v~ + w ~ = o .  

Here ~ is taken as the transverse similarity coordinate. Reynolds stresses fx -- f~ are ob- 
tained by statistical averaging of corresponding second order moments while for the given 
sys=em of waves =hey do not depend on the coordinate x; fo takes the form of external pres- 
sure. The resulting secondary flow will have the form U = U($, z), V = V($, z), W = W(~, z), 
and it is natural to choose the following boundary conditions: the condition of boundedness 
of flow along the coordinate ~: {U, V, W} (~, z) + 0 as ~ + • the periodicity condition 

along the coordinate z: 

{~, v, w, u~, v~, w~}(~ o) = {u, v, w, u~, v~, w~}(~ T). 

It is clear that i n  such a formulation it is possible to find V, W independent of U. 
The secondary flow V, W in the "stream function--vorticity" variables 

V = ~ ,  W - - - - ~ ,  o = V ~ - -  W~ 

is determined from the following system: 
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g~o~ -- g ~ =  = (l/Re)(m~ § ~,~) -- F ( ~  z)~ 

= ~ + ~ F(~,  z) = ~ -- fat. ( 2 . 2 )  

For the crossing F(~ z) = --• sin 2yz~ where J-(~) = <vw>~ ~- 2g[<vv>~ ~ <ww>~ ~ 2?<vw>]. 
It follows from the form of F that the period T is determined as T = 2~/2y. For the Blasius 
boundary layer, the linearized approximation (2.2) which looks exactly like the equation 
for the secondary flow within the framework of the method of small disturbances, makes it 
possible to obtain a sufficiently accurate solution to the complete problem for moderate 
values of • when convection plays a secondary role, and the extremal solution for large 
[i0]. For the first term of the Fourier series ~(~, z) = ~(~) sin 2~z, the linearized system 
(2.2) can be brought to the following nonhomogeneous fourth order ordinary differential 
equation: 

~g~  -- 8?2~ @ 16~ = - - R e •  -. (2.3) 

Its boundary conditions are ~, @E § 0, E § • It is possible to conclude from physical con- 
siderations that for antisymmetric disturbances ~ = ~E$ = 0 on the jet axis, and for 
symmetric disturbances 9~ = ~{~ = 0 which again makes it possible to limit the domain of 
the solution. At the outer boundary E = Ek the exponential decrease of 9 in the form ~ 
(D~ + DaE)exp[--2yE] leads to the following relations: 
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9~ + 4v(9~ + v~) = 0~ 9m + 47@{~ + 79~) : 0, 

which can be taken as the boundary conditions for both modes. Knowing the solution (2.3), 
we determine V($, z) = 2y~(~)cos 2z, W(~, z) = -~ sin 2yz. The longitudinal component of 
the secondary flow U($, z) is described by the Eq. (2.1a) which is solved with the help of 
implicit difference scheme of second order accuracy by iteration [13]. The choice of ex- 
ternal pressure fo is determined by the condition that as z =0 , and in the absence of 
secondary V and W, Eq. (2.1a) gave a laminar profile for the plane jet Uo. Hence it is 
assumed that fo = Uo$$/Re which agrees with [7]. The domain of the solution (2.1a) is the 
rectangle [--$k ~-~ ~ ~< Sk, 0 ~< z ~ T], the boundary conditions are given above. In view 
of the fact that the boundary ~k is chosen sufficiently far (in the laminar case Uo(• z) 
10-5), along with the boundary condition U (• z) = 0 based on physical considerations, 
the condition U(• , z) = 0 is also considered that gave very well-coinciding distributions 
U(~, z). Reynolds stresses f, for the intersections can be given the form /i--• 
2?<uw>)cos2yz + <uv>~]. It has a periodic part which can exist only for three dimensional 
fluctuations and the second part which is analogous in form to Reynolds stresses for two 
dimensional disturbances [7] through which the redistribution of momentum is carried out 
for the plane flow in the field of plane wave disturbance. Analysis of the simultaneous as 
well as the independent effect of the components of-f~ on the mean flow can give the answer 
to the question of concurrent effect of two- and three-dimensional disturbances on the flow. 

3. For antisymmetric disturbances two domains of three-dimensionality have been 
studied. These characterize small (8 ~ 6.5 ~ ) and large (8 ~ 35 ~ angles of inclination of 
the wave to the longitudinal axis. Table 1 gives the eigenvalues of three-dimensional (~, 
yRe, C) and equivalent two-dimensional (k, R, C) waves for four points with the upper branch 
of the neutral curve [5] and indicates the range of the angles 8 that have been studied for 
the critical Reynolds number of symmetric disturbances (point 5). 

Figures i and 2 show the Reynolds stress distribution <uv>D <uw>,~-(~) for the points i 
(Fig. I) and 3 (Fig. 2). At low R (points i, 2) the moment <uv>~ dominates in the jet and 
it is responsible for the plane distortion of the flow. With an increase in Reynolds number, 
as observed from a comparison, there is an increase in the moment <uw> and the complex 6~, 
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which determine the spatial distortion of the flow and the strength of the induced vortex. 
The secondary vortex is shown in subsequent Figs. 3-7 in the form of amplitude functions 
~(~) and ~(~) for • = 0.02 and 0.05 (lines i, 2 respectively). These values of • for the 
chosen normalized eigenfunctions indicate that the amplitude of disturbances is ~2 and 5% 
respectively of the mean flow velocity. The streamlines ~ = const, are schematically shown 
here. For antisymmetric disturbances the vortex center is located on the line z = T/4 and 
the complete picture of the disturbance to the flow region is given by symmetrical vortices 
with respect to ~ = 0 and z = T/2. At small angles @ for all R. The vortex picture is 
similar to the one shown in Fig. 3 (R = 19.45, @ = 6.5~ For small R streamlines are not 
closed, the assumed center lies outside the flow domain in the stagnation region, and a 
localization of the vortex in the flow region takes place with increase in R. For the 

points i, 2 the structure is similar to the one drawn for large @ but starting from R = 
19.45 the picture for large @ is enriched by weak axial counter-rotating vortices shown in 
Fig. 4 for the point 3 when @ = 34.8 ~ We observe that the strength of induced vortices is 
inversely proportional to 8. 

An interesting vortex structure has been obtained by disturbing the flow with crossed 
symmetric waves. Computations showed that at small angles @ one vortex is induced in the 
jet in the entire flow region --~k ~ ~ ~ ~k, and the complete picture consists of two 
symmetric vortices with respect to T/2 (Fig. 5 for @ = 6.6 and 13.35~ lines i, 2 respec- 
tively). With an increase in 8 the structure becomes more complex: There is a degeneration 
of the initial vortex (reduction in strength and mixing in the neighborhood of the axis) and 
the development of two new counter-rotating vortices at large (Fig. 6 for @ = 27.5~ 
Further increase (Fig. 7 for @ = 43.85 ~ ) leads to the complete disappearance of this near- 
axis vortex and a merging of the rest. 

Such is a fairly complex structure of vorticity developed in the plane jet disturbed 
by the crossing of Tollmien--Schlichting waves. The streamwise velocity component of the 
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TABLE i 

2 
0 ~ Re h R C=Cr+iC i 

Antisymmetric Disturbance 

0,t688 
0,t35 

0,8709 
0,72 

t,2205 
t,01 

1,5343 
1,2725 

0,02 
0,1 

0,1 
0,5 

0,t4 
0,7 

6,8 4,04 
35,8 5,00 

6,5 lO,2i 
34,8 i2,35 

6,5 t9,58 
34,7 23,67 

0,168 

0,8766 

t,2285 

4,0155 

tO,t4 0,36574 
--0,00292i 

19,45 0,4636 
+0,00058i 

0375 6,43 4t33 i,5443 
0,875 34,8 49,59 

Symmetric Disturbance 

40,867 I 0,5546 
--O,0OOli 

5 

B, 

0,4301 
0,42i3 
0,38404 
0,3t22 

0,05 6,63 
03 i3,35 
0,2 27,5i 
0,3 43,85 

88,89 
90,75 
99,55 

i22,44 

0,433 88,292 0,71597 
+O,Oi 

T 

secondary flow U(~, z) obtained from (2.1a) is represented in the form <U(~)>:-~- U(~,~)d~ 

N 

which is convenient for comparison with the laminar profile. Integration is carried out 
using the approximate Simpson's formula. Results on the flow distortion are given in the 
form of velocity defect A<U(~)> = <U(~)>-- U 0. The redistribution of momentum takes place 
from the neighborhood of the axis (small ~) to the outer region of the flow field (large ~). 
The velocity defect is the maximum in value at ~ = 0 where Uo = i. For large ~, where Uo 
10 -2 to 10 -3 , the distortion can approach 50% of the laminar case but in view of small U 
it is not clear whether it is caused by the physical process and not by computational errors 
(in particular, boundary condition at ~k). It was observed that the distortion increases 
with increase in Reynolds number, angles 0 and strengths • A typical distortion of the 
mean velocity profile (velocity defect) is shown in Fig. 8 for the point 3 (0 % 35 ~ ) • : 
0.02 and 0.05 (lines 1 and 2 respectively). Qualitatively this picture is similar to this 
even for other R. By summing up the results for a monotonically increasing series of 
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TABLE 2 

R=IO,~$ R=19,45 R=40,866 

~ 6'5~ 34,8 ~ 6,43 ~ ~, 34,8 ~ 

0,363213 0,355091 0,55566 0,56248 
--0,00i3~ --0,0034i 0,02 --0,0069i --0,0069t 

0,05 ] 0,34747 I 0,35287 
--0,004i --0,0043i 

6,5 ~ 3&,7 = 

0,464052 0,46555 
~-0,0004i --0,002/ 

0,47i99 0,48372 
--0,0027i --0;0074i 

Reynolds numbers we get the picture for the qualitative variation of the mean flow which 
corresponds to the experimentally observed structure. It is characterized by the flattening 
of the velocity profile <U(~)> with increasing R. The degree of "pulsation" of such a flow 
is e~=[(<ur~> q-<(v' q-F)2> q-<(w' + ~V)2>)/311/2, which essentially is the same as the degree of 
turbulence eT, is approximately equal to the chosen strength of the disturbances x. 

The stability of the mean flow <U(~)> has been carried out within the framework of 
linear theory. Results are given in Table 2, the initial eigenvalues C= C r+ iC i are 
indicated in Table i. It was observed that as a result of distortion the flow becomes more 
stable when compared to the basic flow which agrees with the data [7] on the stability of 
self-sustained oscillation regimes and experimental data. Equations (2.1a) for the flow 
averaged with the assumption that the streamwise vortex is absent and the only term retained 
in Reynolds stresses fl being • which determines the plane interaction, is reduced 
to the form analyzed in [7]. It was observed that for small values of Reynolds number 
(points i and 2) the distortion of the mean flow is determined by the purely plane interac- 
tion, the vortex strength is so small that it practically does not contribute anything to 
the energy redistribution. With an increase in R the influence of three dimensional dis- 
turbance is felt which strengthens the effect of plane wave. For the point 3 this effect is 
estimated to be approximately 1-2% and for the point 4 it already approaches 10%. The na- 
ture of the disturbance waves should indeed be felt from these Reynolds numbers. 

The results obtained show that for a boundary layer without solid boundaries (plane 
Bickley--Schlichting jet) which is inviscid unstable within the framework of linear stability 
theory, three-dimensionality of disturbances could play a role only in the range of suf- 
ficiently large Reynolds numbers (R ~ 40); however for Reynolds numbers lying close to the 
experimentally observed transition R, the main feature of the disturbed flow is described by 
plane interaction which fundamentally differentiates this flow from the boundary layer on a 
solid surface. 
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INVESTIGATION OF JET FLOW PAST SLOTTED AND WEDGE-SHAPED NOZZLES 

IN A SHOCK TUBE 

V. V. Golub, V. V. Grigor'ev, 
Yu. I. Grin', S. N. Isakov, 

I. M. Naboko, R. L. Petrov, 
and V. G. Testov 

UDC 533.601.1:534.202.2 

Studies in shock tubes have been extensive in recent years. These studies are directed 
in search of techniques to increase the effectiveness of gasdynamic lasers in which, as a 
rule, plane sonic and supersonic nozzles are used for the production of a jet issuing into 
free space or channel. The published experimental studies are primarily devoted to the mea- 
surement of quantum characteristics of GDL (amplification factor, power developed). At the 
same time, gasdynamic studies are few and concern mainly the determination of the wave 
structure of the jet, though relaxation of vibrational energy is determined by the distribu- 
tion of gasdynamic parameters in the flow: velocity, temperature, pressure, and density. 
In computing the properties of gasdynamic lasers it is usually assumed that the jet is one- 
dimensional and steady. However, experimental studies and computations [1-5] of jets 
brought out a number of significant features of the wave structure and the distribution of 
Jet parameters. It was shown that the flow past a nozzle section can have a fairly complex 
spatial structure which affects the characteristics of the laser beam. In particular, flow 
nonuniformity leads to phase nonuniformities in the laser beam which has an important bear- 
ing on the operation of laser at increased power conditions. Besides, in experiments with 
nozzles in shock tube it is necessary to keep in view that a transient flow process pre- 
cedes quasisteady Jet efflux. In the present paper results are given for the experimental 
studies on three dimensional and plane jets in shock tubes under conditions similar to those 
in which studies on the laser characteristics [7, 8] of gas flows were conducted: transient 
time for the density field and the flow geometry, spatial characteristics of density dis- 
tribution. 

Measurements were made in shock tubes with low pressure channel of cross-section 40 x 
40 and 35 • 70 mm. Plane sonic nozzles were set up at the low pressure end in the form of 
orifices with cross section h • a equal to 1.5 x 40 and 2.5 x 70 mm (a/h = 27 and 28.5) or 
plane wedge-shaped supersonic nozzle with an aperture angle of 30 ~ and area ratio Aa/A* = 
15 at a height h = 1.3 mm. 

During studies on spatial jet with sonic nozzle in the shock tube with square cross- 
section, the low pressure chamber and the reservoir were filled with nitrogen. The initial 
pressure p~ was 36 GPa, Mach number M: of the incident shock wave varied in the interval 
M: = 2.5-3.5, and the degree of expansion n = Pa/P= = 16-42. In the case of wedge-shaped 
nozzle the degree of expansion was varied in the range 15-70. 

Measurements in rectangular shock tube for the sonic nozzle with a/h = 28.5 were made 
without the nozzle diaphragm with the initial pressure in the low pressure chamber and the 

decompression chamber Pl = 133 GPa and degrees of expansion n = 7.9 (MI = 2.0) and n = 12.8 
(M~ = 2.2). When the Mach number of the incident shock wave M~ = 1.9, p~ = 1.33; 13.3; 
26.6; 53.2 GPa and p: = 0.i MPa, the following parameters were obtained: ahead of the 
nozzle P5 = 1.9 MPa, P5 = 6.43 kg/M ~, and at the nozzle cross section M a = 4.35, Pa = 53.7 
GPa, Pa = 0.1286 kg/M s. The measured time for the existence of constant deceleration pa- 
rameters before the nozzle was ~2.5 msec. 

The flow in the 40 x 40 mm shock tube was visualized using the shadowgraph IAB-451. 
The investigation of the unsteady structure of three dimensional jet was conducted with the 
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